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Supplementary Notes

Supplementary Note S1

Enrichment of genes related to eye development and potential links to eye-less acanthocephalans

Gene Ontology (GO) analyses suggested connections to “compound eye development” in female vs.
male and “phototransduction” in male vs. female acanthocephalans from barbel, respectively. This is
partly due to the fact that we had used gene IDs of homologs in eyed D. melanogaster for GO analyses
of P. laevis transcripts. Nevertheless, eyes probably existed prior to the divergence of Bilateria [1] and
some of the genes originally involved in eye development and functioning may well have persisted in
the genome of P. laevis. Indeed, we were able to trace potentially homologous sequences coding for
two master transcription factors for eye development [Pax6/eyeless (acc. no. AAX52512.1) and
Six3/optix (acc. no. NP_001260793.1)] in the reference transcriptome of P. laevis (tblastn hits with e-
value < 1e-50). In line with this, evidence for rhodopsin-associated enzymes and transmembrane
receptors of the rhodopsin family have previously been reported for the P. laevis transcriptome [2].
Likewise, transmembrane receptors of the rhodopsin family have been predicted for a bdelloid
(SwissProt: B2L3H7_PHIRO), and the "eyespot" in monogononts is assumed to contain rhodopsin [3].
Moreover, a pair of eyespots is present in Limnognathia maerski (Micrognathozoa) [4], the probable
sister-taxon of the clade including wheel animals and acanthocephalans (reviewed in [5]). In additon,
arrow-worms (Chaetognatha), which may also belong to the closer phylogenetic relationship, possess
a pair of compound eyes the ocelli of which presumably contain rhodopsin-like photopigments [6, 7].
Accordingly, rhodopsin-mediated phototransduction could have existed in the last common ancestor
of Gnathifera from which it potentially was passed on to its descendants. Still, the conservation of such

genes may be more indicative of nutrition in eye-less acanthocephalans as discussed elsewhere [2].

Host-dependent immunological challenges and hints for host-parasite crosstalk

As outlined above, the eel does not provide as good living conditions for P. laevis as does the barbel.
Obviously, this is not because the European eel has nothing to offer to endoparasites as illustrated by
the acanthocephalan Acanthocephalus anguillae and the swim-bladder worm Anguillicoloides crassus
(Nematoda, Dracunculoidea) that both exploit the European eel [8-10]. Rather, the deeper reason for
arrested development of P. laevis in the eel could be a stronger host-parasite interaction [11]. In the
present study, footprints of increased Wnt signaling in male vs. female, and notch signaling in female
vs. male worms from eel could point to the particular immunological challenge P. laevis is facing in this
host. In support of this view, Wnt signaling has been implicated in T cell inflammation and

orchestration of immune response to parasites [12, 13]. Likewise, notch signaling regulates T
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lymphocyte processes in host defense [14] and clearance of gastrointestinal helminth parasites [15] in
other systems. Compared to this, the challenges worms have to cope with in barbel seem to be rather
unspecific. In fact, the GO cluster "innate immune system" enriched in genes with higher transcript
abundances in males vs. females and "signaling by Rho GTPases" in females vs. males could be
indicative of a broad spectrum of immunological responses [16]. These clues to the host immune
response unlikely reflect contamination of the P. laevis samples since we had extracted the RNAs
sequenced from decapitated worms to which no host tissue was attached. In addition, mapping rates
to a reference transcriptome of P. laevis were high (92-95%) for all 20 datasets analyzed here.
Furthermore, the reference transcriptome had been filtered for potential contamination of the sample
with cyprinid tissue [2], and mismapping of host reads to parasite sequences seems very unlikely given
the high age of their split of > 600 million years [17]. However, the enrichment of the signaling
pathways mentioned can also be understood as an indication of cell proliferation and developmental

processes [18-22].



Supplementary Tables

Table S1 — Datasets

$ = Barbus barbus caught in June 2006 in a gravel pit near Gimbsheim, Germany, ¥ = Anguilla anguilla

caught in June 2014 and 2015 in River Weser near Gieselwerder, Germany.

Sample Group Raw reads % Clean % Mapped | ENA accession
reads reads number
R3 female 32,425,723 99.6 95.7 | ERS7302868
worms from
barbel®
R4 female 33,231,064 99.6 95.6 | ERS7302869
worms from
barbel®
R5 female 31,892,176 99.6 96.3 | ERS7302870
worms from
barbel®
R6 female 29,173,941 98.9 95.5 | ERS7302871
worms from
barbel®
R7 female 33,092,559 99.1 96.7 | ERS7302872
worms from
barbel®
R9 male worms 31,062,589 99.6 96.4 | ERS7302873
from barbel®
R10 male worms 34,254,801 99.6 96.2 | ERS7302874
from barbel®
R11 male worms 29,621,019 98.9 95.8 | ERS7302875
from barbel®
R13 male worms 32,964,249 99.6 96.4 | ERS7302876
from barbel®
R14 male worms 34,931,058 99.3 96.8 | ERS7302877
from barbel®




R16

female
worms from

eel”

35,222,695

98.9

97.0

ERS7302878

R17

female
worms from

eel?

30,331,587

98.9

97.1

ERS7302879

R18

female
worms from

eel”

23,314,674

99.1

95.3

ERS7302880

R19

female
worms from

eel”

31,021,260

98.9

95.3

ERS7302881

R20

female
worms from

eel”

33,606,218

98.8

96.9

ERS7302882

R24

male worms

from eel”

39,213,452

98.8

95.3

ERS7302883

R25

male worms

from eel”

34,622,964

98.9

94.5

ERS7302884

R26

male worms

from eel?

31,167,324

98.9

95.0

ERS7302885

R27

male worms

from eel?

35,015,790

98.9

95.4

ERS7302886

R28

male worms

from eel?

35,176,073

99.6

95.4

ERS7302887

mean

32,567,061

99.2

95.9

Table S2 — Differentially expressed genes

The table reports for all pairs of comparison genes showing differential transcript abundances. Only
genes that could be annotated by homology search via BLASTX are included. Table S2 is available in

Additional File 2 in Excel spreadsheet format.
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Figure S1 — P. laevis genes involved in glycolysis/gluconeogenesis showing increased transcript
abundances in males vs. females from barbel

Eleven genes from KEGG pathway 00010 were found to have significantly more transcripts in male vs.
female P. laevis from barbel. Green filling marks enzymes in Drosophila melanogaster as the
phylogenetically relatively close reference species taken here; unfilled boxes represent enzymes that
are specific to other taxa. Red framing indicates genes exhibiting significantly higher transcript
numbers in male vs. female worms from barbel, orange framing indicates significantly higher
abundances in female vs. male worms from the same host. Notably, the two enzymes linking
glycolysis/gluconeogenesis with citrate cycle (EC:4.1.1.32 and EC:6.4.1.1, not included in the presented

pathway depiction) were up-regulated in males vs. females as well.
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Figure S2 — GO terms enriched in genes with elevated transcript levels in female vs. male worms
from barbel

Displayed are results from Gene Ontology (GO) enrichment analysis in BINGO (Cytoscape). Colors refer
to statistical significance of enrichment; the darker the orange, the lower the FDR-adjusted p-value.
Ovals sum GO terms by higher biological processes. Numbers behind category names refer to the

numbers in Fig. 5A (GO enrichment analysis with Metascape). All of the 20 groups were found.
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Figure S3 — GO terms enriched in genes with elevated transcript levels in male vs. female worms

from barbel

Displayed are results from Gene Ontology (GO) enrichment analysis in BINGO (Cytoscape). Colors refer

to statistical significance of enrichment; the darker the orange, the lower the FDR-adjusted p-value.

Ovals sum GO terms by higher biological processes. Numbers behind category names refer to the

numbers in Fig. 5B (GO enrichment analysis with Metascape). 18 out of 20 groups were found.
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Figure S4 — GO terms enriched in genes with elevated transcript levels in female vs. male worms
from eel

Displayed are results from Gene Ontology (GO) enrichment analysis in BINGO (Cytoscape). Colors refer
to statistical significance of enrichment; the darker the orange, the lower the FDR-adjusted p-value.
Ovals sum GO terms by higher biological processes. Numbers behind category names refer to the

numbers in Fig. 6A (GO enrichment analysis with Metascape). 3 out of 9 groups were found.
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Figure S5 — GO terms enriched in genes with elevated transcript levels in male vs. female worms
from eel

Displayed are results from Gene Ontology (GO) enrichment analysis in BINGO (Cytoscape). Colors refer
to statistical significance of enrichment; the darker the orange, the lower the FDR-adjusted p-value.
Ovals sum GO terms by higher biological processes. Numbers behind category names refer to the

numbers in Fig. 6B (GO enrichment analysis with Metascape). 17 out of 20 groups were found.
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Figure S6 — Genes with reduced transcript abundances in female acanthocephalans from eel vs.

barbel

Shown are the functional categories with highest significance for enrichment.
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Figure S7 — Genes with elevated transcript abundances in female acanthocephalans from eel vs.

barbel

Shown are the functional categories with highest significa
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Figure S8 — Genes with reduced transcript abundances in male acanthocephalans from eel vs.
barbel

Shown are the functional categories with highest significance for enrichment.
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Figure S9 — Genes with elevated transcript abundances in male acanthocephalans from eel vs.
barbel

Shown are the functional categories with highest significance for enrichment.
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